Lesson 1.3 - Numbers in Exponential Form Raised to a Power

Recall that when we combine bases that are being multiplied we \qquad the exponents. When we combine bases that are being divided we \qquad the exponents. At the beginning of the last lesson we reviewed the rule for multiplying like bases in depth, let's take a closer look at our rule for dividing like bases.

In general, if y is nonzero and m, n are positive integers, then

$$
\frac{y^{m}}{y^{n}}=y^{m-n} \quad \text { if } m>n
$$

Questions for discussion

- Why did the rule mention that y is "nonzero"?
- Why did they state that $m>n$?

Numbers in Exponential Form Raised to a Power

$$
\left(7^{4}\right)^{6}
$$

A number in exponential form raised to a power.

We will use the same strategy that we used in Lesson 1 and 2 to explore what occurs when a number in exponential form is raised to a power. We will expand our expression, condense it, then look for a pattern. However, we will not expand it completely. We will use the rule we discovered in lesson 1 to help save some time.

Complete the notes on the next page.

Class Notes - Expand the expression, then condense it.

LP\#1	
	$\left(14^{5}\right)^{3}$
LP\#2	
$\left(4.3^{3}\right)^{6}$	

Use what you observe above to complete the following.

$$
\left(x^{a}\right)^{b}=
$$

When we raise a power to a power the exponent for the new expression is the (sum/difference/product/quotient) \qquad of the original exponents.

Class Notes - Simplify the following expressions. Show your work by using one of the two methods below.

Examples of how to show your work.

$$
\begin{aligned}
& \text { Expanding and Condensing } \\
& \begin{aligned}
\left(3^{8}\right)^{4} & =3^{8} \cdot 3^{8} \cdot 3^{8} \cdot 3^{8} \\
& =3^{8+8+8+8} \\
& =3^{32}
\end{aligned}
\end{aligned}
$$

Using the algorithm

$$
\begin{aligned}
\left(3^{8}\right)^{4} & =3^{804} \\
& =3^{32}
\end{aligned}
$$

Review - Simplify the following expressions. Show work.

