Lesson 1.3 – Numbers in Exponential Form Raised to a Power

Recall that when we combine bases that are being multiplied we ______ the exponents. When we combine bases that are being divided we ______ the exponents. At the beginning of the last lesson we reviewed the rule for multiplying like bases in depth, let's take a closer look at our rule for dividing like bases.

In general, if y is nonzero and m, n are positive integers, then

$$\frac{y^m}{y^n} = y^{m-n} \qquad \text{if } m > n$$

Questions for discussion

- Why did the rule mention that y is "nonzero"?
- Why did they state that *m* > *n*?

Numbers in Exponential Form Raised to a Power

We will use the same strategy that we used in Lesson 1 and 2 to explore what occurs when a number in exponential form is raised to a power. We will expand our expression, condense it, then look for a pattern. However, we will not expand it completely. We will use the rule we discovered in lesson 1 to help save some time.

Complete the notes on the next page.

Lesson 1.3

$ \begin{array}{c} \text{LP#1}\\ \left(14^{5}\right)^{3} \end{array} $	$(9^7)^4$
LP#2	
$(4.3^3)^6$	$(1.7^{6})^{5}$
LP#3	
$((-7)^2)^5$	$((-2.3)^7)^3$
If we were to express our exponential expression in standard form, would our answer be negative or positive?	If we were to express our exponential expression in standard form, would our answer be negative or positive?

Use what you observe above to complete the following.

When we raise a power to a power the exponent for the new expression is the (sum/difference/product/quotient) ______ of the original exponents.

Class Notes – Simplify the following expressions. Show your work by using one of the two methods below.

Examples of how to show your work.

$\frac{\text{Expanding an}}{\left(3^{8}\right)^{4}} = 3^{8}$ $= 3$ $= 3^{2}$	$\frac{nd \ Condensing}{4 \cdot 3^8 \cdot 3^8 \cdot 3^8}$ $\frac{8+8+8+8}{32}$	$\frac{\text{Using t}}{(3^8)}$	$\frac{\text{he algorithm}}{1}^{4} = 3^{8 \cdot 4}$ $= 3^{32}$
LP#4 (8 ¹⁵) ⁶	(15 ⁹) ¹¹	(8.2 ⁵) ⁷	(0.25 ¹⁷) ⁴
LP#5 $((-7)^9)^{13}$	$((-19)^5)^{20}$	Kyle wrote $(5^4)^6 = 5^{10}$. show work to correct his	Is he correct? If not, mistake.
If we were to express our exponential expression in standard form, would our answer be negative or positive?	If we were to express our exponential expression in standard form, would our answer be negative or positive?		

 ${\bf Review}-{\rm Simplify}$ the following expressions. Show work.

R#1	$(1072)^{16}$	Alicia is confused on whether to add or multiply
	(4.87)	the exponents when simplifying the following
$(43^{11})^7$		expression.
		*
		$6^7 \cdot 6^{13}$
		What does she need to do?
		What answer should she get?
		what answer should she get:
R#2	(Simplify the following expression Express your
Kπ2	$(0.125^4)^2$	answer using a base of 9
$(62^7)^7$		
(02)		
		()7
		$(81^3)'$
D#2	()20	Cimplify the following expression Express your
K#3	$(0.8^6)^{50}$	answer using a base of 2
$((17)^8)^5$		answer using a base of 2.
		$(16^2)^5$

Lesson 1.3