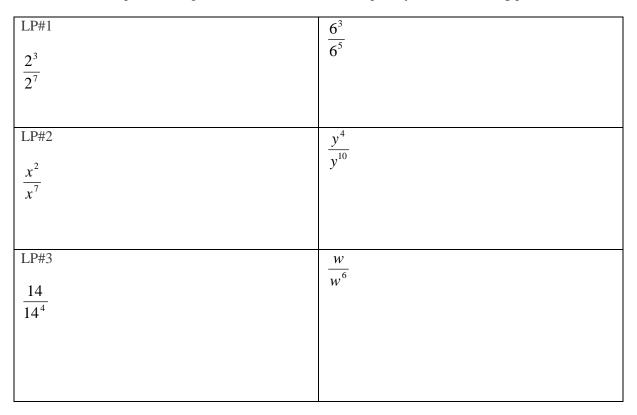
## Lesson 1.5 – Numbers Raised to a Negative Exponent

**Recall that** when we raise "anything" to the zeroth power, the value of the exponential expression is \_\_\_\_\_. Technically, that is not entirely true. There is one value that cannot be raised to the a power of zero. Do you know what value it is?

For any number y, such that  $y \neq 0$ ,

$$y^0 = 1$$




raised to a negative exponent.

## Numbers Raised to a Negative Exponent

Similar to the last lesson, we will use two methods of simplifying exponential expression to help determine what occurs when we raise a base to a negative power. In the first set of notes, we will expand our expression, condense it, then simplify. In the second set of notes, we will use the algorithm from lesson 2 for dividing numbers in exponential form.

Complete the notes on the next page.



Class Notes – Expand the expression, then condense it. Express your answer using powers.

Class Notes – Use the division rule and express your answers as a power.

| $     LP#4     \frac{2^3}{2^7} $ | $\frac{6^3}{6^5}$    |
|----------------------------------|----------------------|
| $\frac{LP\#5}{\frac{x^2}{x^7}}$  | $\frac{y^4}{y^{10}}$ |
| $   LP#6      \frac{14}{14^4} $  | $\frac{w}{w^6}$      |

Use the two sets of class notes above to simplify the exponential expressions below.

| 2 <sup>-4</sup> = | $6^{-2} =$ | $x^{-5} =$ | $y^{-6} =$ | 14 <sup>-3</sup> = | $w^{-5} =$ |
|-------------------|------------|------------|------------|--------------------|------------|
|                   |            |            |            |                    |            |

Complete the rule for negative exponents below by reflecting on what occurred with our notes.

$$x^{-a} =$$

**Class Notes** –Express the following expressions using positive exponents.

| LP#7            | 13 <sup>-2</sup> | $2^{-4}$        | 3 <sup>-3</sup> |
|-----------------|------------------|-----------------|-----------------|
| 5 <sup>-3</sup> |                  |                 |                 |
| LP#8            | $m^{-8}$         | $15^{-1}$       | 7 <sup>-2</sup> |
| y <sup>-5</sup> |                  |                 |                 |
| LP#9            | $m^{-1}$         | 9 <sup>-2</sup> | 4 <sup>-3</sup> |
| $x^{-10}$       |                  |                 |                 |
| LP#10           | $3m^{-4}$        | $(4ab)^{-2}$    | $4ab^{-2}$      |
| $(3m)^{-4}$     |                  |                 |                 |

**Review** – Express the following expressions using positive exponents.

| R#1              | 5 <sup>-4</sup> | $x^{-2}$  | y <sup>-5</sup> |
|------------------|-----------------|-----------|-----------------|
| 3 <sup>-2</sup>  |                 |           |                 |
|                  |                 |           |                 |
| R#2              | 6 <sup>-3</sup> | $p^{-3}$  | $d^{-6}$        |
| 10 <sup>-2</sup> |                 | •         |                 |
| 10               |                 |           |                 |
|                  |                 |           |                 |
| R#3              | $2^{-3}$        | $k^{-10}$ | $h^{-7}$        |
| 9 <sup>-1</sup>  |                 |           |                 |
|                  |                 |           |                 |
|                  |                 |           |                 |