Laws of Exponents Activity (Assigned after lesson 1.5)

Recall that when we raise a base to a negative exponent, we can convert it to an equivalent expression that contains a positive exponent.

For any positive number *y*, and for any positive integer *n*, we define $y^{-n} = \frac{1}{y^{n}}$

Checking Other Students' Work

For this activity, we will check other students' work. Unfortunately, these students are struggling to keep all of their rules for exponents straight. You are to...

- look over each students work
- find their mistake
- correct the step at which they made the mistake
- finish the problem showing all the correct work

Look at the examples below.

Problem #1	Correction #1	Problem #2	Correction #2
5 ⁸ 7 ² 5 ⁴		$2^5 4^2$	
$5 \cdot 7 \cdot 5$		$2 \cdot 4$	
$5^{\circ} \cdot 5^{\circ} \cdot 7^{-}$	- 8+4 - 2	82	
$5^{6\times4}\cdot7^2$	$5^{12} \cdot 7^{-12}$	8'	
$-5^{32} \cdot 7^{2}$	$5^{12} \cdot 7^{2}$		

Laws of Exponents Activity

Problem #3	Correction #3	Problem #4	Correction #4
$6^4 \cdot 4^8 \cdot 4^3 \cdot 6^{12}$		$9^{12} \div 9^3$	
$6^4 \cdot 6^{12} \cdot 4^8 \cdot 4^3$		9 ^{12÷3}	
$36^{4+12} \cdot 16^{8+3}$		9^4	
$36^{16} \cdot 16^{11}$			
Problem #5	Correction #5	Problem #6	Correction #6
$(14^8)^5$		$(1.3^5 \times 1.3^2)^0$	
14 ⁸⁺⁵		$(1.3^{5+2})^0$	
14 ¹³		$(1.3^7)^0$	
		1.3 ^{7×0}	
		13 ⁰	
		0	
Problem #7	Correction #7	Problem #8	Correction #8
2-3		3 ⁻⁴	
1		$(-3)^4$	
$\overline{2^3}$		$(-3) \cdot (-3) \cdot (-3) \cdot (-3)$	
$\frac{1}{1}$		81	
6			
Problem #9	Correction #9	Problem #10	Correction #10
217 2-5		-8 -3	
$\frac{2^{17} \times 2^{-5}}{2^6}$		$\frac{3^{\circ} \times 4^{\circ}}{4^{\circ} \times 3^{\circ}}$	
$2^{17+(-5)}$		4×3 $3^8 \times 4^3$	
2^{6}		$\overline{3^5 \times 4^5}$	
$\frac{2^{12}}{26}$		$3^{8-5} \times 4^{3-5}$	
2° $2^{12\div6}$		$3^3 \times 4^{-2}$	
2^2		$\begin{array}{c} 27 \times (-16) \\ 422 \end{array}$	
4		- 432	

Laws of Exponents Activity