Lesson 2.1 - Moving Shapes Around - Translations

We will use the coordinate plane to help us understand how shapes can be moved. Before we begin to move objects, we need to acquaint ourselves with the coordinate plane. The coordinate plane is typically divided into four sections by two axes. The two axes are frequently labeled ' x ' and ' y '. The \boldsymbol{x} - axis is horizontal and is perpendicular to the \boldsymbol{y}-axis. The \boldsymbol{y} - axis is vertical and is perpendicular to the x axis. The point where the two axes meet is called the origin. The ray formed by the x - axis and the origin that extends out to the right of the y-axis contains positive values for x. The ray formed by the x-axis and the origin that extends out to the left of the y - axis contains negative values for x. The ray formed by the y - axis and the origin that extends out above the x - axis contains positive values for y. The ray formed by the y-axis and the origin that extends down below the x - axis contains negative values for y.

The four sections are called quadrants. The quadrants are often labeled using the Roman numerals I, II, III, and IV. Quadrant I contains positive values for x and y. Quadrant II contains negative values for x and positive values for y. Quadrant III contains negative values for x and negative values for y. Quadrant IV contains positive values for x and negative values for y.

Set 1 - Use the information above to label the quadrants (I, II, III, IV), the axes (x and y), and plot the given points.

Set 2- Use the dotted vector to slide point A to image A'. Use the same vector to translate points B and C and label the images B^{\prime} and C^{\prime}. Connect the points to form triangle $A^{\prime} B^{\prime} C^{\prime}$ and answer the questions on the right.

Set 3- Use the dotted vector to translate the shape EFG. Label the image of shape EFG appropriately.

In what quadrant does triangle ABC lie?

In what quadrant does triangle $A^{\prime} B^{\prime} C^{\prime}$ lie?

State the length of the line segments $A B$ and $A^{\prime} B^{\prime}$. Is $A B$ congruent to $A^{\prime} B^{\prime}$?

State the length of the line segments CA and C'A'. Is CA congruent to C'A'?

Use a ruler to measure $B C$ and $B^{\prime} C^{\prime}$ and state their measures. Are these two segments congruent?

In what quadrant does shape EFG lie?

In what quadrants does shape E'F'G' lie?

State the measures of the line segments EF and E'F'. Is EF congruent to $E^{\prime} F^{\prime}$?

The shape EFG is translated \qquad units down and \qquad units to the left.
 \qquad

Set 4- In the diagram below, rectangle ABCD has been translated. Draw a dotted line to represent the vector that point A traveled along to arrive at point A'. Then label the rest of the points for the image of rectangle ABCD.

Set 5- In the diagram below, triangle EFG has been translated. Draw a dotted line to represent the vector that point E traveled along to arrive at point E'. Then label the rest of the points for the image of triangle EFG.

In what quadrant does rectangle ABCD lie?

In what quadrant does rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ lie?

The point A is translated \qquad units down and \qquad units to the right to arrive at point A^{\prime}.

Do points B, C, and D travel the same amount of units down and the same amount of units to the right?

Plot point $K(-8,-1)$. Use point K to draw $\overrightarrow{K L}$ in quadrant III to represent the vector used in this translation.

State the perimeter of rectangle $A B C D$ and rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

In what quadrants does triangle $E^{\prime} F^{\prime} \mathbf{G}^{\prime}$ lie?

The point E is translated \qquad units up and \qquad units to the right to arrive at point E^{\prime}.

Do points F and G travel the same amount of units up and the same amount of units to the right?

Plot point $K(3,-10)$. Use point K to draw $\overrightarrow{K L}$ in quadrant IV to represent the vector used in this translation.

Is the length of segment GE equal in measure to the length of G'E'? State their measures.

