Lesson 2.2 - Moving Shapes Around - Reflections

Let us first think about what happens when we look into a mirror to explore our next method of moving around shapes. When you look into the mirror you see a reflection of yourself inside of the mirror. Unless it is a trick mirror, your reflection retains the same shape and size as you. However, there is one aspect that does not hold true.

Set 1 - Use the diagram on the left to answer the questions on the right.

In order to reflect an object, we need something to reflect it through. When you look into a mirror, you are reflected through the mirror to your image on the other side. In this section we will reflect images through a line. When performing this process, we commonly say that we are "flipping the image over the line."

Class Discussion - the images below have been reflected through horizontal and vertical lines. Label the unlabelled points in the following diagrams.

Set 2 - Follow all instructions and use the diagram to answer the questions.

For triangles DEF and D'E'F'.

The distance from the x - axis to point D is \qquad —.

The distance from the x - axis to point D^{\prime} is \qquad _.

The distance from the x - axis to point E is \qquad —.

The distance from the x - axis to point E^{\prime} is \qquad -.

The distance from the x - axis to point F is \qquad .

The distance from the x - axis to point F^{\prime} is \qquad -.

For the following questions answer clockwise or counterclockwise.

Trace the vertices of triangle DEF in alphabetical order. In what direction did you trace?

Trace the vertices of triangle $D^{\prime} E^{\prime} F^{\prime}$ in alphabetical order. In what direction did you trace?

For rectangles KJHI and K'J'H'I'.

Label the image of rectangle KJHL

State the coordinates for both rectangles.

rectangles.					M)	M	
K(,)	K'(,)	N()	N)
J	,)	J'(,)	O()	0)
H()	$\mathrm{H}^{\prime} \mathrm{C}$,)						
I (,)	I^{\prime} (,)						

In the diagram: new image is labeled D'E'F'. new image is not completely labeled.

- square PQRS has yet to be reflected.

Label the image of triangle MNO.

State the coordinates for both rectangles.

- triangle DEF has been reflected over the x - axis. The triangle's
- rectangle HIJK has been reflected over the y - axis. The rectangle's new image is not completely labeled.
- triangle MNO has been reflected over the x - axis. The triangle's

For triangles MNO and M'N'0'. \quad For square PQRS.

Reflect square PQRS through the y-axis.

State the coordinates for both rectangles.

| $P(, ~)$ | $P^{\prime}(, ~)$ |
| :--- | :--- | :--- |
| $Q(, ~)$ | $Q^{\prime}(, ~)$ |
| $R(, ~)$ | $R^{\prime}(, \quad)$ |
| $S(, ~)$ | $S^{\prime}(, \quad)$ |

Trace the remaining shapes similar to how triangles DEF and D'E'F were. Do you see a similar pattern occurring? Explain.

