Lesson 2.6 - Sequencing Translations

In the next several lessons, we will be moving objects using a combination of the three basic rigid motions. To review, the three basic rigid motions are \qquad ,
\qquad and \qquad . In this lesson we will move objects
around the coordinate plane using two or more translations.

Quick Questions

- What two things do we need to translate an object?
- A term that can be used to describe the two items above is \qquad .

Set 1 - On the grids below, draw a vector to represent each description.

Draw vector $\overrightarrow{A B}$ that moves a point 3 units to the right and 5 units down.

Draw vector $\overrightarrow{D E}$ that moves a point 6 units to the left and 2 units up.

Draw vector $\overrightarrow{F G}$ that moves a point 7 units to the left and 4 units down.

Set 2 - Label each vector accordingly. In the space below write a description that would describe each vector.

Set 3 - Translate each object using each vector given and label appropriately. Complete all tasks given.
A. Plot the points $\mathrm{A}(2,-8)$, $\mathrm{B}(6,-3)$ and $\mathrm{C}(9,-7)$. Connect the points to form triangle ABC . Translate ABC using the vectors below.

vector 2

B. Plot the points $\mathrm{F}(1,3)$,
$\mathrm{G}(1,6), \mathrm{H}(4,3)$ and $\mathrm{I}(4,6)$. Connect the points to form square FGHI. Translate FGHI using the vectors below.

vector 2

In quadrant II, draw a vector $\overrightarrow{Q R}$ that would take triangle A"B"C" back to triangle ABC.

In quadrant III, draw a vector $\overrightarrow{Q R}$ that would take square F"G"H"I" back to square FGHI.
C. Plot the points $\mathrm{K}(7,2), \mathrm{L}(9,3)$ and $\mathrm{M}(8,5)$. Connect the points to form triangle KLM. Translate KLM using the vectors below.

D. Plot the points $\mathrm{S}(0,3), \mathrm{T}(4,0)$ and $U(-1,-1)$. Connect the points to form triangle STU. Translate STU using the vectors below.

Draw vector $\overrightarrow{A B}$ that moves a point 4 units to the right and 3 units down.

Draw vector $\overrightarrow{D E}$ that moves a point 7 units to the left and 1 unit up.

In quadrant II, draw a vector $\overrightarrow{Q R}$ that would take triangle K"L"M" back to triangle KLM.

In quadrant I , draw a vector $\overrightarrow{Q R}$ that would take triangle $\mathrm{S}^{\prime \prime} \mathrm{T}$ " $\mathrm{U}^{\prime \prime}$ back to triangle STU.

R\#1

Label the axes. Plot the following points, connect the points to form triangle DEF: $D(-4,-1), E(-1,-1), F(-2$, $-6)$. Translate DEF using the vectors below. Illustrate each triangle after each translation and label appropriately.

In quadrant II, draw a vector $\overrightarrow{Q R}$ that would take triangle D"E"F" back to triangle DEF.

R\#2

Label the axes. Plot the following points, connect the points to form triangle $\mathrm{XYZ}: \mathrm{X}(5,-2), \mathrm{Y}(2,0), \mathrm{Z}(1,-6)$. Translate XYZ using the vectors below. Illustrate each triangle after each translation and label appropriately.

In quadrant III, draw a vector $\overrightarrow{Q R}$ that would take triangle X"Y"Z" back to triangle XYZ.

R\#3

Label the axes. Plot the following points, connect the points to form square $A B C D: A(2,2), B(6,2), C(6$, $6), D(2,6)$. Translate square $A B C D$ using the vectors below. Illustrate each square after each translation and label appropriately.

In quadrant IV, draw a vector $\overrightarrow{Q R}$ that would take square A " ${ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime} D^{\prime \prime}$ back to square ABCD .

