Lesson 2.7 - Sequencing Reflections and Translations

In this lesson we will be moving objects using a combination of a translation and a reflection.

Quick Questions

- In order to reflect an object, what do we need to know?
- When we reflect an object, does the labeling on the vertices stay in the same order? Explain.

Set 1 - Translate and reflect each object in the order that the transformations are given. Draw and label each object after each rigid motion using 'primes' and "double-primes". Answer any questions.
A. Plot the points $\mathrm{A}(2,-8)$, $\mathrm{B}(6,-3)$ and $\mathrm{C}(9,-7)$. Connect the points to form triangle $A B C$.

First, translate using the vector below. Label the image $A^{\prime} B^{\prime} C^{\prime}$.

Then, reflect triangle $A^{\prime} B^{\prime} C^{\prime}$ through the x-axis and label it $A " B " C "$.

Look at triangle ABC. The vertices are labeled in a \qquad direction.

Look at triangle $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$. The vertices are labeled in a ___ direction.

Look at triangle $A " B " C$ ". The vertices are labeled in a direction.
B. Plot the points $\mathrm{F}(1,3)$,
$G(1,5), H(4,3)$ and $I(4,6)$.
Connect the points to form quadrilateral FGHI.

First, reflect quadrilateral FGHI through the x-axis. Label the image $F^{\prime} G^{\prime} H^{\prime} I^{\prime}$.

Then, translate $\mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime} \mathrm{I}^{\prime}$ using the vector below and label it F"G"H"I"

During which transformation does the order of the labeling switch to an opposite direction?
C. Plot the points F(1, 3),
$G(1,5), H(4,3)$ and $I(4,6)$. Connect the points to form quadrilateral FGHI.

First, translate quadrilateral FGHI using the vector below. Label the image $\mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime} \mathrm{I}^{\prime}$.

Then, reflect F'G'H'I' through the x - axis and label it $\mathrm{F}^{\prime \prime} \mathrm{G}^{\prime \prime} \mathrm{H}^{\prime \prime} \mathrm{I}$

During which transformation does the order of the labeling switch to an opposite direction?

Compare B and C. Does switching the order of reflecting and translating between the two sets take $\mathrm{F}^{\prime \prime} \mathrm{G}^{\prime \prime} \mathrm{H}^{\prime \prime} \mathrm{I}$ " to the same final location?
D. Plot the points $S(0,3)$, $\mathrm{T}(4,0)$ and $\mathrm{U}(-1,-1)$. Connect the points to form triangle STU.

Draw vector $\overrightarrow{A B}$ that moves a point 5 units to the right. Translate triangle STU using this vector. Label the new image $S^{\prime} T^{\prime} U^{\prime}$.

Then, reflect S'T'U' over the S'T'U' over the y-axis. Label it S"T"U".

During which transformation does the order of the labeling switch to an opposite direction?
E. Plot the points $S(0,3)$,
$T(4,0)$ and $U(5,4)$. Connect the points to form triangle STU.

First, reflect STU over the y axis. Label it S'T'U'.

Draw vector $\overrightarrow{A B}$ that moves a point 6 units to the down. Translate triangle S'T'U' using this vector. Label the new image S"T"U".

During which transformation does the order of the labeling switch to an opposite direction?

Compare \mathbf{D} and \mathbf{E}. Does the different sequencing of transformations in the two sets take S"T"U" to the same final location?

