Lesson 1: Exponential Notation

Classwork

$$5^6$$
 means $5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5$ and $\left(\frac{9}{7}\right)^4$ means $\frac{9}{7} \times \frac{9}{7} \times \frac{9}{7} \times \frac{9}{7}$

You have seen this kind of notation before, it is called **exponential notation**. In general, for any number x and any positive integer n,

$$x^n = \underbrace{(x \cdot x \cdots x)}_{n \text{ times}}$$

The number x^n is called x raised to the n-th power, n is the exponent of x in x^n and x is the base of x^n .

Exercise 1

$$\underbrace{4 \times \cdots \times 4}_{7 \text{ times}} =$$

Exercise 6

$$\frac{7}{2} \times \cdots \times \frac{7}{2} =$$

Exercise 2

$$\underbrace{3.6 \times \dots \times 3.6}_{times} = 3.6^{47}$$

$$\underbrace{(-13) \times \cdots \times (-13)}_{6 \text{ times}} =$$

Exercise 3

$$\underbrace{(-11.63) \times \cdots \times (-11.63)}_{34 \text{ times}} =$$

Exercise 8

$$\underbrace{\left(-\frac{1}{14}\right)\times\cdots\times\left(-\frac{1}{14}\right)}_{10\ times}=$$

Exercise 4

$$\underbrace{12 \times \dots \times 12}_{times} = 12^{15}$$

Exercise 9

$$\underbrace{x \cdot x \cdots x}_{185 \ times} =$$

Exercise 5

$$\underbrace{(-5) \times \cdots \times (-5)}_{10 \text{ times}} =$$

Exercise 10

$$\underbrace{x \cdot x \cdots x}_{times} = x^n$$

Exercise 11

Will these products be positive or negative? How do you know?

$$\underbrace{(-1)\times(-1)\times\cdots\times(-1)}_{12\ times}=(-1)^{12}$$

$$\underbrace{(-1)\times(-1)\times\cdots\times(-1)}_{13\ times}=(-1)^{13}$$

Exercise 12

Is it necessary to do all of the calculations to determine the sign of the product? Why or why not?

$$\underbrace{(-5)\times(-5)\times\cdots\times(-5)}_{95\ times}=(-5)^{95}$$

$$\underbrace{(-1.8) \times (-1.8) \times \dots \times (-1.8)}_{122 \ times} = (-1.8)^{122}$$

Exercise 13

Fill in the blanks about whether the number is positive or negative.

If n is a positive even number, then $(-55)^n$ is

If n is a positive odd number, then $(-72.4)^n$ is _____

Exercise 14

Josie says that $\underbrace{(-15) \times \cdots \times (-15)}_{6 \ times} = -15^6$. Is she correct? How do you know?

Problem Set

1. Use what you know about exponential notation to complete the expressions below.

$$\underbrace{(-5) \times \cdots \times (-5)}_{17 \text{ times}} =$$

$$\underbrace{3.7 \times \dots \times 3.7}_{times} = 3.7^{19}$$

$$\underbrace{7 \times \cdots \times 7}_{times} = 7^{45}$$

$$\underbrace{6 \times \cdots \times 6}_{4 \text{ times}} =$$

$$\underbrace{4.3\times\cdots\times4.3}_{13\ times}=$$

$$\underbrace{(-1.1) \times \cdots \times (-1.1)}_{9 \text{ times}} =$$

$$\underbrace{\left(\frac{2}{3}\right) \times \cdots \times \left(\frac{2}{3}\right)}_{19 \text{ times}} =$$

$$\underbrace{\left(-\frac{11}{5}\right) \times \cdots \times \left(-\frac{11}{5}\right)}_{\text{times}} = \left(-\frac{11}{5}\right)^{x}$$

$$\underbrace{(-12) \times \cdots \times (-12)}_{times} = (-12)^{15}$$

$$\underbrace{a \times \cdots \times a}_{m \ times} =$$

- 2. Write an expression with (-1) as its base that will produce a positive product.
- 3. Write an expression with (-1) as its base that will produce a negative product.
- 4. Rewrite each number in exponential notation using 2 as the base.

$$32 =$$

- 5. Tim wrote 16 as $(-2)^4$. Is he correct?
- 6. Could -2 be used as a base to rewrite 32? 64? Why or why not?

